3.1384 \(\int \frac{(b d+2 c d x)^{9/2}}{(a+b x+c x^2)^{3/2}} \, dx\)

Optimal. Leaf size=258 \[ -\frac{84 d^{9/2} \left (b^2-4 a c\right )^{7/4} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{b d+2 c d x}}{\sqrt{d} \sqrt [4]{b^2-4 a c}}\right ),-1\right )}{5 \sqrt{a+b x+c x^2}}+\frac{84 d^{9/2} \left (b^2-4 a c\right )^{7/4} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{5 \sqrt{a+b x+c x^2}}+\frac{56}{5} c d^3 \sqrt{a+b x+c x^2} (b d+2 c d x)^{3/2}-\frac{2 d (b d+2 c d x)^{7/2}}{\sqrt{a+b x+c x^2}} \]

[Out]

(-2*d*(b*d + 2*c*d*x)^(7/2))/Sqrt[a + b*x + c*x^2] + (56*c*d^3*(b*d + 2*c*d*x)^(3/2)*Sqrt[a + b*x + c*x^2])/5
+ (84*(b^2 - 4*a*c)^(7/4)*d^(9/2)*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt[b*d + 2*c
*d*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1])/(5*Sqrt[a + b*x + c*x^2]) - (84*(b^2 - 4*a*c)^(7/4)*d^(9/2)*Sqrt[-(
(c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[b*d + 2*c*d*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1]
)/(5*Sqrt[a + b*x + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.246077, antiderivative size = 258, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {686, 692, 691, 690, 307, 221, 1199, 424} \[ -\frac{84 d^{9/2} \left (b^2-4 a c\right )^{7/4} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{5 \sqrt{a+b x+c x^2}}+\frac{84 d^{9/2} \left (b^2-4 a c\right )^{7/4} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{5 \sqrt{a+b x+c x^2}}+\frac{56}{5} c d^3 \sqrt{a+b x+c x^2} (b d+2 c d x)^{3/2}-\frac{2 d (b d+2 c d x)^{7/2}}{\sqrt{a+b x+c x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(b*d + 2*c*d*x)^(9/2)/(a + b*x + c*x^2)^(3/2),x]

[Out]

(-2*d*(b*d + 2*c*d*x)^(7/2))/Sqrt[a + b*x + c*x^2] + (56*c*d^3*(b*d + 2*c*d*x)^(3/2)*Sqrt[a + b*x + c*x^2])/5
+ (84*(b^2 - 4*a*c)^(7/4)*d^(9/2)*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticE[ArcSin[Sqrt[b*d + 2*c
*d*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1])/(5*Sqrt[a + b*x + c*x^2]) - (84*(b^2 - 4*a*c)^(7/4)*d^(9/2)*Sqrt[-(
(c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[b*d + 2*c*d*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1]
)/(5*Sqrt[a + b*x + c*x^2])

Rule 686

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d*(d + e*x)^(m - 1)*
(a + b*x + c*x^2)^(p + 1))/(b*(p + 1)), x] - Dist[(d*e*(m - 1))/(b*(p + 1)), Int[(d + e*x)^(m - 2)*(a + b*x +
c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && NeQ[m + 2
*p + 3, 0] && LtQ[p, -1] && GtQ[m, 1] && IntegerQ[2*p]

Rule 692

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(2*d*(d + e*x)^(m -
1)*(a + b*x + c*x^2)^(p + 1))/(b*(m + 2*p + 1)), x] + Dist[(d^2*(m - 1)*(b^2 - 4*a*c))/(b^2*(m + 2*p + 1)), In
t[(d + e*x)^(m - 2)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[
2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && (IntegerQ[2*p] || (IntegerQ[m] &
& RationalQ[p]) || OddQ[m])

Rule 691

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[-((c*(a + b*x + c
*x^2))/(b^2 - 4*a*c))]/Sqrt[a + b*x + c*x^2], Int[(d + e*x)^m/Sqrt[-((a*c)/(b^2 - 4*a*c)) - (b*c*x)/(b^2 - 4*a
*c) - (c^2*x^2)/(b^2 - 4*a*c)], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e,
 0] && EqQ[m^2, 1/4]

Rule 690

Int[Sqrt[(d_) + (e_.)*(x_)]/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(4*Sqrt[-(c/(b^2 - 4*a*
c))])/e, Subst[Int[x^2/Sqrt[Simp[1 - (b^2*x^4)/(d^2*(b^2 - 4*a*c)), x]], x], x, Sqrt[d + e*x]], x] /; FreeQ[{a
, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && LtQ[c/(b^2 - 4*a*c), 0]

Rule 307

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-(b/a), 2]}, -Dist[q^(-1), Int[1/Sqrt[a + b*x^
4], x], x] + Dist[1/q, Int[(1 + q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && NegQ[b/a]

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[(Rt[-b, 4]*x)/Rt[a, 4]], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 1199

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Dist[d/Sqrt[a], Int[Sqrt[1 + (e*x^2)/d]/Sqrt
[1 - (e*x^2)/d], x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && EqQ[c*d^2 + a*e^2, 0] && GtQ[a, 0]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rubi steps

\begin{align*} \int \frac{(b d+2 c d x)^{9/2}}{\left (a+b x+c x^2\right )^{3/2}} \, dx &=-\frac{2 d (b d+2 c d x)^{7/2}}{\sqrt{a+b x+c x^2}}+\left (14 c d^2\right ) \int \frac{(b d+2 c d x)^{5/2}}{\sqrt{a+b x+c x^2}} \, dx\\ &=-\frac{2 d (b d+2 c d x)^{7/2}}{\sqrt{a+b x+c x^2}}+\frac{56}{5} c d^3 (b d+2 c d x)^{3/2} \sqrt{a+b x+c x^2}+\frac{1}{5} \left (42 c \left (b^2-4 a c\right ) d^4\right ) \int \frac{\sqrt{b d+2 c d x}}{\sqrt{a+b x+c x^2}} \, dx\\ &=-\frac{2 d (b d+2 c d x)^{7/2}}{\sqrt{a+b x+c x^2}}+\frac{56}{5} c d^3 (b d+2 c d x)^{3/2} \sqrt{a+b x+c x^2}+\frac{\left (42 c \left (b^2-4 a c\right ) d^4 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \int \frac{\sqrt{b d+2 c d x}}{\sqrt{-\frac{a c}{b^2-4 a c}-\frac{b c x}{b^2-4 a c}-\frac{c^2 x^2}{b^2-4 a c}}} \, dx}{5 \sqrt{a+b x+c x^2}}\\ &=-\frac{2 d (b d+2 c d x)^{7/2}}{\sqrt{a+b x+c x^2}}+\frac{56}{5} c d^3 (b d+2 c d x)^{3/2} \sqrt{a+b x+c x^2}+\frac{\left (84 \left (b^2-4 a c\right ) d^3 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{1-\frac{x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt{b d+2 c d x}\right )}{5 \sqrt{a+b x+c x^2}}\\ &=-\frac{2 d (b d+2 c d x)^{7/2}}{\sqrt{a+b x+c x^2}}+\frac{56}{5} c d^3 (b d+2 c d x)^{3/2} \sqrt{a+b x+c x^2}-\frac{\left (84 \left (b^2-4 a c\right )^{3/2} d^4 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt{b d+2 c d x}\right )}{5 \sqrt{a+b x+c x^2}}+\frac{\left (84 \left (b^2-4 a c\right )^{3/2} d^4 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1+\frac{x^2}{\sqrt{b^2-4 a c} d}}{\sqrt{1-\frac{x^4}{\left (b^2-4 a c\right ) d^2}}} \, dx,x,\sqrt{b d+2 c d x}\right )}{5 \sqrt{a+b x+c x^2}}\\ &=-\frac{2 d (b d+2 c d x)^{7/2}}{\sqrt{a+b x+c x^2}}+\frac{56}{5} c d^3 (b d+2 c d x)^{3/2} \sqrt{a+b x+c x^2}-\frac{84 \left (b^2-4 a c\right )^{7/4} d^{9/2} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{5 \sqrt{a+b x+c x^2}}+\frac{\left (84 \left (b^2-4 a c\right )^{3/2} d^4 \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{x^2}{\sqrt{b^2-4 a c} d}}}{\sqrt{1-\frac{x^2}{\sqrt{b^2-4 a c} d}}} \, dx,x,\sqrt{b d+2 c d x}\right )}{5 \sqrt{a+b x+c x^2}}\\ &=-\frac{2 d (b d+2 c d x)^{7/2}}{\sqrt{a+b x+c x^2}}+\frac{56}{5} c d^3 (b d+2 c d x)^{3/2} \sqrt{a+b x+c x^2}+\frac{84 \left (b^2-4 a c\right )^{7/4} d^{9/2} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{5 \sqrt{a+b x+c x^2}}-\frac{84 \left (b^2-4 a c\right )^{7/4} d^{9/2} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt{b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt{d}}\right )\right |-1\right )}{5 \sqrt{a+b x+c x^2}}\\ \end{align*}

Mathematica [C]  time = 0.146354, size = 122, normalized size = 0.47 \[ -\frac{8 d^3 (d (b+2 c x))^{3/2} \left (7 \left (b^2-4 a c\right ) \sqrt{\frac{c (a+x (b+c x))}{4 a c-b^2}} \, _2F_1\left (\frac{3}{4},\frac{3}{2};\frac{7}{4};\frac{(b+2 c x)^2}{b^2-4 a c}\right )-2 \left (c \left (c x^2-7 a\right )+2 b^2+b c x\right )\right )}{5 \sqrt{a+x (b+c x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(b*d + 2*c*d*x)^(9/2)/(a + b*x + c*x^2)^(3/2),x]

[Out]

(-8*d^3*(d*(b + 2*c*x))^(3/2)*(-2*(2*b^2 + b*c*x + c*(-7*a + c*x^2)) + 7*(b^2 - 4*a*c)*Sqrt[(c*(a + x*(b + c*x
)))/(-b^2 + 4*a*c)]*Hypergeometric2F1[3/4, 3/2, 7/4, (b + 2*c*x)^2/(b^2 - 4*a*c)]))/(5*Sqrt[a + x*(b + c*x)])

________________________________________________________________________________________

Maple [B]  time = 0.277, size = 498, normalized size = 1.9 \begin{align*} -{\frac{2\,{d}^{4}}{10\,{c}^{2}{x}^{3}+15\,bc{x}^{2}+10\,acx+5\,{b}^{2}x+5\,ab} \left ( 336\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{-{\frac{2\,cx+b}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{{\frac{-b-2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}{\it EllipticE} \left ( 1/2\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{2},\sqrt{2} \right ){a}^{2}{c}^{2}-168\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{-{\frac{2\,cx+b}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{{\frac{-b-2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}{\it EllipticE} \left ( 1/2\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{2},\sqrt{2} \right ) a{b}^{2}c+21\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{-{\frac{2\,cx+b}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{{\frac{-b-2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}{\it EllipticE} \left ( 1/2\,\sqrt{{\frac{b+2\,cx+\sqrt{-4\,ac+{b}^{2}}}{\sqrt{-4\,ac+{b}^{2}}}}}\sqrt{2},\sqrt{2} \right ){b}^{4}-32\,{c}^{4}{x}^{4}-64\,b{c}^{3}{x}^{3}-112\,{x}^{2}a{c}^{3}-20\,{x}^{2}{b}^{2}{c}^{2}-112\,ba{c}^{2}x+12\,{b}^{3}cx-28\,ac{b}^{2}+5\,{b}^{4} \right ) \sqrt{c{x}^{2}+bx+a}\sqrt{d \left ( 2\,cx+b \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*c*d*x+b*d)^(9/2)/(c*x^2+b*x+a)^(3/2),x)

[Out]

-2/5*d^4*(336*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((
-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2
)^(1/2))^(1/2)*2^(1/2),2^(1/2))*a^2*c^2-168*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*(-(2*c*x+b
)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*EllipticE(1/2*((b+2*c*x+(
-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*a*b^2*c+21*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c
+b^2)^(1/2))^(1/2)*(-(2*c*x+b)/(-4*a*c+b^2)^(1/2))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1
/2)*EllipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),2^(1/2))*b^4-32*c^4*x^4-64*b
*c^3*x^3-112*x^2*a*c^3-20*x^2*b^2*c^2-112*b*a*c^2*x+12*b^3*c*x-28*a*c*b^2+5*b^4)*(c*x^2+b*x+a)^(1/2)*(d*(2*c*x
+b))^(1/2)/(2*c^2*x^3+3*b*c*x^2+2*a*c*x+b^2*x+a*b)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (2 \, c d x + b d\right )}^{\frac{9}{2}}}{{\left (c x^{2} + b x + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)^(9/2)/(c*x^2+b*x+a)^(3/2),x, algorithm="maxima")

[Out]

integrate((2*c*d*x + b*d)^(9/2)/(c*x^2 + b*x + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (16 \, c^{4} d^{4} x^{4} + 32 \, b c^{3} d^{4} x^{3} + 24 \, b^{2} c^{2} d^{4} x^{2} + 8 \, b^{3} c d^{4} x + b^{4} d^{4}\right )} \sqrt{2 \, c d x + b d} \sqrt{c x^{2} + b x + a}}{c^{2} x^{4} + 2 \, b c x^{3} + 2 \, a b x +{\left (b^{2} + 2 \, a c\right )} x^{2} + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)^(9/2)/(c*x^2+b*x+a)^(3/2),x, algorithm="fricas")

[Out]

integral((16*c^4*d^4*x^4 + 32*b*c^3*d^4*x^3 + 24*b^2*c^2*d^4*x^2 + 8*b^3*c*d^4*x + b^4*d^4)*sqrt(2*c*d*x + b*d
)*sqrt(c*x^2 + b*x + a)/(c^2*x^4 + 2*b*c*x^3 + 2*a*b*x + (b^2 + 2*a*c)*x^2 + a^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)**(9/2)/(c*x**2+b*x+a)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (2 \, c d x + b d\right )}^{\frac{9}{2}}}{{\left (c x^{2} + b x + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)^(9/2)/(c*x^2+b*x+a)^(3/2),x, algorithm="giac")

[Out]

integrate((2*c*d*x + b*d)^(9/2)/(c*x^2 + b*x + a)^(3/2), x)